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Abstract

Let G be a graph embedded in the sphere. A k-nest of a point z
not in G is a collection C1,. .., Cy of disjoint cycles such that for each
C;, the side containing = also contains C; for each j < i. An embedded
graph is k-nested if each point not on the graph has a k-nest. In this
paper we examine k-nested maps. We find the minor-minimal k-nested
maps small values of k. In particular, we find the obstructions (under
the minor order) for the class of planar maps with the property that
one face’s boundary meets all other face boundaries.



1 Introduction

Let G be a spherical graph, a graph drawn without crossings on the 2-
dimensional sphere S. Our interest is in separating some points in the sphere
from others using simple cycles in GG. Of course, this is not always possible:
two points in the same component, or same face, of S — G are not separated.
On the other hand, in some cases two points can be separated by many
“nested” cycles of GG. Let’s make this more precise.

A k-nest of a point x in S — G is a collection of simple cycles C, ..., Cy
of G such that for each 7, the side of C; that contains z also contains C} for
every j < i. Observe that if x is k-nested, then there exists a point y such
that every xy-path in the sphere intersects GG in at least k points; just pick y
on the side of C} that does not contain . We say that the embedded graph
G is k-nested if every point z in S — G has a k-nest.

The definition above concerns only nesting of points in S — G. Call an
embedded graph k*-nested if every point of S is k-nested, including those
points in . This is a slightly stronger condition, as it is easy to see the
following.

Lemma 1.1 Every k™ -nested graph is k-nested, and every k-nested graph is
(k — 1)"-nested. m

A graph H is a minor of G if H can be formed from G by a sequence
of edge contractions, edge deletions, and deletion of isolated vertices. The
relation “H s a minor of G” forms a partial ordering on all spherical graphs.

Lemma 1.2 If G has a minor H that is k-nested, then G is also k-nested.
The same statement holds for k™ -nested graphs.

Proof: The disjoint cycles C1, ... C} for each point of the embedded H also
serve as disjoint cycles of G. =

It is natural to consider the smallest graphs that are k-nested, or k*-
nested, where smallest refers to the minor order. In this paper we look for
these graphs. The small cases are covered in Section 2, and the case of 2-
nested graphs is covered in Section 3. We close with some concluding remarks
in Section 4. These include an interesting rephrasing of Theorem 3.1 as a
variation of outerplanar graphs. On with the proofs!



2 The small cases

In this section we consider the minimal k- and k*-nested graphs for very
small values of k.

Lemma 2.1 The only minor-minimal 0-nested graph or 0% -nested graph is
K. The only minor-minimal 1-nested graph is a single loop on a vertez.

Proof: The statement for 0- and 0"-nested graphs is true because there is
no restriction on the embedded graph. Any l-nested graph must contain a
cycle, and hence contains a single loop as a minor. m

Having warmed up on the easier cases, we now show a preliminary lemma
and then slightly harder proposition.

Lemma 2.2 Let G be a minor-minimal k- or k*-nested spherical graph.
Then 1) G does not contain a cut edge, 2) G does not contain a degree two
vertex, and 3) G does not contain three edges all in parallel. Moreover, if
G is minor-minimal k-nested, then 4) G does not contain a degree 3 vertex
incident with two parallel edges, and 5) G does not contain a degree 4 vertex
incident with two pairs of parallel edges.

Proof: The first statement holds because if e is a cut edge, the cycles of
G correspond precisely to the cycles of G — e. Hence any nesting set for
G is also a nesting set for G — e, contradicting the minimality of G. The
second statement holds for the same reason when we consider G /e where e
is incident with the vertex of degree two. For the third statement, let e be
one of three pairwise parallel edges. Again, any nesting set of GG corresponds
to a nesting set of G — e, contradicting the hypothesized minimality of G.

For the fourth statement, if e is one of the two parallel edges incident
with a degree three vertex, then any set of nesting cycles in G for a point
not in G corresponds to a set of nesting cycles in the contracted G/e. (The
vertex in G/e corresponding to e may not have the necessary nesting cycles,
so the statement is false for k*-nesting.) Likewise, for the fifth statement,
any one of the four incident edges can be contracted and the graph remains
k-nested, but not necessarily k"-nested. m

Proposition 2.1 The only minor-minimal 11 -nested graphs are those shown
in Figure 1.



a) b) c)
Figure 1: The minor-minimal 1"-nested maps.

Proof: Let x be a vertex of (G. Because x is nested, there exists a cycle C'
of G that does not contain z. If x is on a cycle that is disjoint from C', then
we have a submap isomorphic to that on the left of Figure 1.

By Lemma 2.2 the degree of z in G is at least three. If there exist paths
from x to three different vertices of C, then G contains the K,y minor shown
on the right of Figure 1. Hence the component of G — C' that contains x can
attach to at most two points on C'; call these points y and z. Observe that
this component must attach to both y and z, or else we have either disjoint
cycles or three pairwise parallel edges.

Now, the degree of x is at least three, so there exist two distinct paths
from x to say y and one from x to z. Every point on the sphere except ¥ is
now disjoint from a cycle. Let C’" be the cycle disjoint from 1. Because there
are no disjoint cycles, C' must intersect both the digon on x,y and the digon
on z,y. Add a subpath of C' between these two digons. The resulting graph
contains the graph shown in the middle of Figure 1 as a minor. m

Having finished the “easy” cases, in the next section we will look at a
harder case.

3 Minimal 2-nested graphs

In this section we want to find all minor-minimal 2-nested spherical embedded
graphs. They are shown in Figure 2. Some of these spherical graphs shown
have variants (1-flips) that are also minor-minimal 2-nested spherical graphs;
we’ll make this more precise shortly.

The following lemma is useful when considering 2-nested graphs. Its proof
follows from the fact that the boundary walk of any face of an embedded



graph that is not a tree contains a cycle.

Lemma 3.1 A graph G embedded in the sphere is 2-nested if and only if
for every face f, there is a face g such that their boundary walks in G are
disjoint. m

Let e be a loop incident with a vertex v. Consider an embedding of G —e
in the sphere. There are many different ways to extend the embedding to
include e. For example, the edge e could be added in a small neighborhood
of v in any incident face. If two embeddings of the same graph differ only in
where a loop attaches at a vertex, we say that one is a 1-flip of the other.
The following is not difficult.

Lemma 3.2 Let G be a minor-minimal 2-nested graph in the sphere. Then
any 1-flip of G is also minor-minimal 2-nested.

By Lemma 3.2 we need only consider minor-minimal 2-nested graphs up
to 1-flips. If we consider 1-flips as different maps, then the number of minimal
2-nested maps increases. For example, G5 has a 1-flip which is not isomorphic
as a map.

We make even a finer distinction between maps. When considering when
two maps on the sphere are isomorphic, it is sometimes convenient to con-
sider maps on the oriented sphere and to consider only orientation-preserving
homeomorphisms of the sphere to determine isomorphic maps. In this sce-
nario, a map is not necessarily isomorphic to its mirror image (the same map
with the opposite orientation). This can introduce some additional minor-
minimal oriented maps.

We now give our main result.

Theorem 3.1 There are exactly 9 minor-minimal 2-nested spherical graphs
up to 1-flips. They are given in Figure 2. There are exactly 12 minor-
minimal 2-nested spherical graphs up to map isomorphisms. There are ex-
actly 16 minor-minimal 2-nested oriented spherical graphs up to oriented map
1somorphisms.

Proof: The last two statements follow from the first one with some tedious
case checking. Also, it is tedious but straightforward for the reader to verify
that each of the 9 graphs are 2-nested, but do not remain so after the deletion
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Figure 2: The minor-minimal 2-nested maps up to 1-flips.



or contraction of any edge. The remainder of the proof of the first statement
follows from Propositions 3.1-3.6. m

We now give the proofs of the propositions. The names of the graphs
come from their labels in Figure 2.

Proposition 3.1 Let G be a minor-minimal 2-nested spherical map that is
not connected. Then G is G;.

Proof: Let K be a component of G such that one side, which we’ll call the
inside, of K has no other component of G. Let x be a point on the outside
of K very near an edge of K. This x is 2-nested. If both cycles are in K,
then these two cycles together with a cycle from another component give a
Gy submap. If both cycles are outside of K, then these together with a cycle
of K give a G; submap. =

Proposition 3.2 Let G be a connected minor-minimal 2-nested spherical
map that contains a loop. Then G s either Gy, G5, or Gf.

Proof: Let ¢ be a loop on a vertex v. Find a 1-twist of e, if necessary,
so that e bounds a face. Let x be a point in the other face with e in its
boundary. Then z is 2-nested by cycles C; and C5. If the loop e is disjoint
from C and Cy, then we have a G subgraph. But e cannot intersect C,
nontrivially, because it is separated from Cy by . Hence C; must contain
v, and we have the subgraph shown on the left half of Figure 3. Following
that figure, we shall refer to the face bounded by e as the inside, the side of
C} containing Cy as its inside, and the side of C5 not containing C'; as its
inside.

a) b) C)

Figure 3: The graphs of Proposition 3.2.



We can assume that we pick C'; and Cy among all possible such subgraphs
so as to enclose the maximum possible number of faces of G in the annulus
bounded by these cycles. Observe that any point inside of Cs, outside of (',
or inside the loop e is already 2-nested. The only points not yet 2-nested
are in the annulus bounded by C; and C5. Now G — e is not 2-nested, so
there exists a face f (necessarily in the annulus) whose boundary does not
contain v but intersects every other face in the annulus. Hence either there
is a vertex v on C5 that separates (' from the rest of G, or there is a submap
H isomorphic to either the middle or right of Figure 3.

If there is the cut-vertex wu, then let g be the region in the annulus that
contains both v and u. To nest the points in g there exists a cycle disjoint
from v and from the boundary of ¢g. This gives a G; minor, a contradiction.

The case shown on the right of Figure 3 is a minor of the case shown in
the middle of that figure. As it happens, the same argument works for both
cases. We will argue off of the rightmost figure and leave the extension to
the other case for the reader. Let H be the subgraph of G' shown in Figure
3.

Let g be the region of H that is in the annulus and contains v on the
boundary. Points z in ¢ are the only ones not two-nested. If there exists a
face h disjoint from ¢, then there are three possibilities. First, if h is outside
C1, or if h is inside of C but its boundary does not intersect Cy, then we
have a G; minor. If h is inside of C and its boundary does not intersect
C1, then we have either a GG; or G5 minor. Finally, if A intersects both C;
and C5, then we have a G5 minor. We conclude that there is no face that is
disjoint from the boundary of g, and in particular, we conclude that g cannot
be a face of G.

Over all possible such subgraphs H, pick the one where g has the minimal
possible number of faces of G. Then, avoiding a G; minor, there is no chord
in ¢ which is not incident with v. In fact, any chord must have as a minor a
subgraph with chord uv. Let g; be the subregion of G Uuv “above” wv, and
go be the subregion “below”. Now, ¢g; must have a face whose boundary is
disjoint from the boundary of ¢;, but by the above intersects the boundary
of g. Likewise ¢, has a face whose boundary is disjoint from g, but which
intersects g. It follows that G has a (G35 minor, and the proposition is shown.
]

Proposition 3.3 Let G be a connected minor-minimal 2-nested loopless spher-
tcal graph that contains a subgraph homeomorphic to the left half of Figure



4. Then G is Gy4.
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Figure 4: The graphs of Proposition 3.3.

Proof: We refer the reader to Figure 3.3 for information on how our sub-
graph H is labeled. We use that figure to define the inside and outside of the
two circuits in the obvious manner. Note that any point outside of (', inside
of C1, or in either of the two 2-sided faces is already 2-nested. It remains
only to find the additional parts of G — H that make points in the annulus
2-nested.

The points in g; remain 2-nested in the graph G — e;. Since there are
points in G — e; that are not 2-nested, they must lie in a face f; whose
boundary is disjoint from that of g;, but which intersects the boundary of
all other faces of GG. Similarly, deleting e; gives a graph which is not 2-
nested, so these points lie in a face f; whose boundary is disjoint from ¢, but
which intersects the boundary of all other faces. These faces f; and f, are
necessarily distinct and lie in the annulus bounded by C; and Cs, so G has
as a minor the subgraph shown in the right half of Figure 4.

The only points that are not now 2-nested lie in the face labeled h. Hence
there exists a face whose boundary does not intersect that of h. This face’s
boundary must intersect both cycles in the annulus, or else it can be con-
tracted to a loop. We now have (G, as a minor, as desired. m

Proposition 3.4 There is no G that is a minor-minimal 2-nested spherical
graph that contains a topological K, disjoint from a cycle.
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Figure 5: The graphs of Proposition 3.4.

Proof: By way of contradiction suppose that G was such a graph with a
subgraph H isomorphic to the left side of 5. Chose H so that the number
of faces of GG in the annulus between the two components is maximal. Call
the three edges of the K, which are not on the boundary of the annulus
spokes. If we contract any of the three spokes, the resulting graph is not
2-nested. Hence there must exist a face in the annulus incident with every
other face except the K, face incident with the other end of the spoke. It
follows that G contains a graph as in the right half of 5, where some of the
edges in the outside cycle may be contracted. This graph has a cube minor
by contracting the entire outside cycle to a point, a contradiction that G was
chosen minor-minimal. m

A theta-graph is a subgraph homeomorphic to one with two vertices and
three parallel edges joining them. It is called this because it resembles the
Greek letter 6.

Proposition 3.5 Let G be a minor-minimal 2-nested spherical graph that
contains a theta-graph disjoint from a cycle, but is not covered under previous
propositions. Then G is Gg or Gr.

Proof: We label the graph as depicted in Figure 6a and refer to the inside
of C'y and () as the sides containing the remaining edge e. The only points
that are already not 2-nested by this subgraph H are those in the annulus
bounded by C; and C5. Chose the copy of H in GG so that the number of
faces of G in this annulus is maximized.

Because G is minor minimal, G//e is not 2-nested. Hence there exist faces
f1 and f5 in the annulus that are incident with e and at least one of them has
a boundary incident with all other faces. If either one of the two faces is not
incident with Cs, then we fall in to the case of Proposition 3.3 or Proposition

10
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Figure 6: The graphs of Proposition 3.5.
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3.4. Hence G must have a subgraph H as depicted in Figure 5b. The bold
lines may be edges of H, or may be contracted to vertices of H. Label the
faces f3 and f, as shown.

If none of the bold edges are contracted, H has many cube minors. But
the cube is our Gy, hence it cannot be contained in any other minor-minimal
example. We break into cases.

Case 1: G contains the graph of Figure 6c. If we delete e, the resulting
graph is not 2-nested. Hence there exists a face j either 1) its boundary
does not intersect that of g;, but intersects all other faces, or 2) its boundary
does not intersect that of g, but intersects all other faces. These form two
subcases.

Case 1.1:  The face 5 of G must lie in the face h; of H, because no other
face of H has the possibility of intersecting the boundary of all faces except
g1 Moreover, one or both of the bold edges on Cy must be contracted. If
both edges are contracted we get the graph of Figure 6e, without the dotted
edge. The points in hy are not 2-nested. The only possibility for a disjoint
face that meets all other faces has as a minor the graph of Figure 6e with
the dotted edge. This is GG7 on our list. If only one of the bold edges on C,
is contracted, then we get the graph of Figure 6f, without the dotted edge.
Again, the only way to choose a second face disjoint from hs that avoids the
previous case has as a minor the graph with the dotted edge of Figure 6f,
which is G on our list.

Case 1.2:  The face j of G must lie in the face hy of H. Its boundary
must intersect that of ¢g;, fi, and f5, and must not intersect that of g;. The
only possibility has as a minor the graph of Figure 6g. This graph has an
octahedral minor formed by contracting the bold edge and deleting one of the
two resulting parallel edges. The octahedron is Gg on our list, contradicting
that G was minor-minimal.

Case 2: (G contains the graph of Figure 6d. If we delete e, the resulting
graph is not 2-nested. Hence there exists a face j such that, without loss of
generality, its boundary is disjoint from g; but intersects the boundary of all
other faces. This gives the graph of Figure 6h as a minor. As before, the two
bold edges may be contracted in this figure. We break into two subcases,
depending on whether the bold edge in the boundary of fs is 1) contracted,
or 2) not contracted.

Case 2.1:  After the bold edge on f; is contracted, we examine why we
cannot contract the edge between faces g; and f;. There must exist a face
incident with one end of this edge whose boundary intersects all other faces

12



except one on the other end of the edge. One of these two faces cannot
contain the vertex v. If the face without v is in not in hg, then we get either
the subgraph of Proposition 3.3 or of Proposition 3.4. Hence the face is in
hy. We now get an octahedral minor (Gg) as in Case 1.2.

Case 2.2: If the edge on f5 is not contracted, then we contract the edge
between fy and hy and the other solid edge and get an octahedral minor.
Case 3: G contains the graph of Figure 61 (without the dotted line). Now,
G — e is not 2-nested, so there exists a face j disjoint from (without loss
of generality) g; and whose boundary intersects all other faces. The only
possibility for j is the labeled face with the dotted line included where at
least one of the two bold edges are contracted.

The graph formed from contracting the edge between f; and g; is not

2-nested, so there are two faces k; and ko incident with either end of that
edge whose boundaries are disjoint. Moreover, one of these faces, say k;, has
a boundary that intersects all other face boundaries except k. This face k;
must lie in A, and its boundary must contain the vertex v. The other face
ko must lie in either g;, g, or f and cannot contain v. All possibilities for ks
give the cases of Propositions 3.3 or 3.4.
Case 4:  None of the previous cases. Observe that if none of the bold
edges are contracted, then G' has two pentagons f; and f, with five pairwise
non-adjacent edges joining them. The only ways to avoid a cube minor and
not have the contractions of the first three cases are shown in Figure 6j and
6k. The only points not yet nested are in the region with x. Any way of
nesting these two points gives a previous case.

This ends the casework and completes the proof of Proposition 3.5. =

Proposition 3.6 Let G be a connected minor-minimal 2-nested spherical

graph without loops that does not contain a theta-graph disjoint from a cycle.
Then G is Gg or Gy.

Proof: Pick an arbitrary point z and use the fact that it is 2-nested to find
disjoint cycles C'; and C5 in G. Suppose that there is a vertex v of G that is
not in C; U (5. There cannot be paths from v to two distinct points of Cf,
or else we get a theta-graph disjoint from a cycle. Similarly there cannot be
paths from v to distinct points in C;. There cannot be three distinct paths
from v to (', or else again there is a theta-graph disjoint from a cycle. Hence
either v is of degree two, degree 3 and incident with two parallel edges, or
incident with two faces each bounded by digons. Each of these cases are
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impossible by Lemma 2.2. We conclude that all edges of G — (C; U Cy) have
one end in C and the other in Cj.

We consider the faces in the annulus between C; and Cs. First, suppose
that there is a face bounded by two edges in the annulus. Let f be another
face with one of these two edges in its boundary. There exist a face ¢ in
the annulus disjoint from f. This face g is also disjoint from the digon, and
hence is disjoint from a theta graph. So all faces are bounded by at least
three edges.

Second, suppose that there exists a quadrilateral annulus face disjoint
from another quadrilateral face. Then G contains the cube, Gy.

Third, suppose that there is a quadrilateral face in the annulus that is
disjoint from a triangle. Then we have a subgraph H as shown in Figure
7a, except for the dotted lines. Now, the quadrilateral and the triangle are
disjoint cycles, and by the argument above all remaining edges must have an
end in each cycle. The only possible edges that do this and are not incident
with the vertex labeled v are shown as dotted edges in Figure 7a. Both of
these dotted edges must be included to 2-nest all points in the annulus on
faces incident with v. But the resulting graph has an octahedral minor—Gjy
on our list—and hence is not minor-minimal.

-
Y

v
a) b) c)

Figure 7: The graphs of Proposition 3.6.

.From the first three cases we conclude that there is no quadrilateral face,
in fact, that all faces are triangles.

Fourth, suppose that there exist two disjoint triangular faces in the annu-
lus that both have an edge on C (or symmetrically on Cy), giving the graph
on Figure 7b. The outside face cannot be bounded by two parallel edges,
since if so G is not 2-nested. Hence G has a vertex v as shown. Any edge
from v to C) creates a theta-graph disjoint from a cycle, contradicting the
hypothesis of this proposition.
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We are down to the case that all faces are triangles, and all disjoint pairs
of triangles in the annulus have one edge from C and one edge from C,.
Starting with the picture in Figure 7c it is easy to see that G contains the
octahedron Gg as a minor. m

4 Conclusion

We begin by rephrasing Theorem 3.1. Recall that by Lemma 3.1, a graph
is 2-nested if and only if for every face f there is a face ¢ such that the
boundaries of f and ¢ are disjoint. Hence graphs that are not 2-nested have
the property that there is at least one face f whose boundary meets the
boundary of all other faces. This is a variation on outerplanarity: the special
face need not contain every vertex, but must contain at least one vertex from
all other faces. Hence we have shown the following.

Corollary 4.1 A spherical map G has a face whose boundary intersects all
other face boundaries if and only if it does not contain one of the maps of
Figure 2 or their 1-flips as a minor.

We could have considered other orderings besides graph minors. For ex-
ample, a graph H is a topological subgraph of G if H can be formed by deleting
edges, deleting isolated vertices, and replacing the two edges in parallel on
a degree two vertex with a single edge. The topological ordering is coarser
than the minor ordering, hence there might be more topologically-minimal
k-nested graphs than minor-minimal k-nested graphs. Any topologically min-
imal graph can be transformed into a minor-minimal graph by contracting
edges. It would be a straightforward task to take the graphs of Figure 2 and
construct the topologically-minimal 2-nested graphs, but in this paper we
chose to focus on the minor order.

The relationship between graph minors and structural properties such
as tree-width has been widely studied recently [3, 4]. For the appropriate
definitions and a excellent survey we refer the reader to Reed [1]. The authors
originally hoped for a relationship between having a high nesting number and
having large tree-width. But a large nesting number might have small tree-
width: a set of 2k — 1 nested loops is a k-nested graph with tree-width
2. However, these graphs have a special properties that leads to the next
definition.
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Let G be a spherical graph, and let x be a point of S — G. The local
nesting number of x, v(x) is the maximum k with nested cycles C, ..., Cy
around z. The roundness of G is the maximum ratio v(z)/v(y) over all points
x,y. A set of 2k — 1 nested loops has roundness close to 2. The roundness is
bounded between 1 and 2.

Conjecture 4.1 Let G be the family of graphs with roundness bounded above
by 2—e. Then there ezists a function f(n) such that for any G € G, a nesting
number at least f(n) implies a tree-width at least n.
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