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Abstract

We present an algorithmic construction of anti-Pasch Steiner triple
systems for orders congruent to 9 mod 12. This is a Bose-type method
derived from a particular type of 3-triangulations generated from
non-sum-one-difference-zero sequences (NS1D0 sequences). We in-
troduce NS1DO0 sequences and describe their basic properties; in par-
ticular we develop an equivalence between the problem of finding
NS1DO0 sequences and a variant of the n-queens problem. This equiv-
alence, and an algebraic characterization of the NS1D0 sequences
that produce anti-Pasch Steiner triple systems, form the basis of our
algorithm.

1 Background

Let X be a finite set. A set system or configuration is a pair (X, .A), with
A C 2%, The order of the set system is | X|. The elements of X are points
and the elements of A are blocks. A t-(v,k,A) design is a k-uniform set
system (X, A) of order v such that each ¢-subset of X is contained in pre-
cisely X blocks of A. A 2-(v,3,1) design is a Steiner triple system of order
v and is denoted by STS(v). See [2] for an extensive introduction to triple
systems. A (k,{)-configuration in an STS (X, A) is a subset of £ blocks
in A whose union is a k-element subset of X. The Pasch configuration or
quadrilateral is the (6,4)-configuration on elements (say) a, b, ¢, d, e, f with
blocks {a,b,c},{a,d,e},{f,d,b} and {f,c,e}. An STS is anti-Pasch (or
quadrilateral-free) if it does not contain the (6,4)-configuration. The exis-
tence of anti-Pasch Steiner triple systems has been the subject of numerous
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papers, and has only recently been settled [4]. Nevertheless, explicit con-
structions of such systems remains important, in part because more com-
plex problems such as the existence of anti-Pasch resolvable Steiner triple
systems remain open and of practical concern [1].

We introduce the concept of 3-triangulation and present without proof
some relevant elementary properties. A detailed study of 3-triangulations
containing proofs appears in [3].

Given an odd integer n > 1, a 3-triangulation is an edge-coloration T
of K, with colors {0,...,n — 1} such that for each pair 4,j of different
elements in {0,...,n — 1}, one and only one of the following conditions is
satisfied:

3TRIAN-1: Vertex i is incident with exactly two j-colored edges and
vertex 7 is not incident with any ¢-colored edge.

3TRIAN-2: Vertex j is incident with exactly two i-colored edges and
vertex ¢ is not incident with any j-colored edge.

3TRIAN-3: Vertex i is incident with exactly one j-colored edge and vertex
j is incident with exactly one i-colored edge.

Given a 3-triangulation Y of order n, its Bose graph, denoted By, has
the edges of K, as vertices, and two of these vertices, say ey, es,e1 # ey are
adjacent if and only if one of these two conditions is true:

BOSE-1: e; and es are adjacent in K,, and Y(e;) = T(e2)

3

BOSE-2: e; = (T(e2),4) and e; = (Y(e1),j) for some vertices i, j in K.

3

A BOSE-1 adjacency is negative and a BOSE-2 adjacency is positive.

For any 3-triangulation Y, By is a 2-regular simple graph (Lemma 5.2
in [3].)

Let T be a 3-triangulation of order n. A function o :V(By) — {+,—}
is a signing of Y if, for any pair of adjacent vertices in By, say e; and es,
o(e1) = o(eq) if and only if the adjacency between e; and ey is positive. T
is signable if there exists a signing of Y.

A 3-triangulation Y is signable if and only if each cycle in By has an
even number of negative adjacencies (Lemma 5.3 in [3].)

Any signable 3-triangulation of order n yields an STS(3n) using the
following algorithm (Theorem 2.1 in [3].) This is a Bose type method.

Algorithm 1.1 Yields an STS from a 3-triangulation
Input: A signable 3-triangulation of order n Y with signing o.

Output: A Steiner triple system S of order 3n.
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Method:

1. X «+ {(a,i)la€{0,....,n =1} and i € {0,1,2}}

2. S + {{(a,0),(a,1),(a,2)}a € {0,...,n —1}}

3. for each (a,b) in K, do

8 SUH{(0.3). (0,6 o(0.) D mod 3). 0.9} =0.1.2)
. return

The Steiner triple system induced by a signable 3-triangulation Y and
a signing o, denoted Sv, is the STS produced by this algorithm.

Any 3-triangulation Y of order n can be associated with an algebra
({0,...,n — 1},0) where o is the operation:

Y, ifi#j
7’”‘{ i ifi=j 1)
The operation o is binary, closed, commutative, idempotent, and for
each pair of distinct elements a,b € {0,...,n — 1} the equations
aox = b (2)
boy = a (3)

with unknowns = and y satisfy exactly one of the conditions:
1. There are exactly two solutions for z and none for y.
2. There are exactly two solutions for y and none for z.
3. There is exactly one solution for z and one for y.

We adopt this equivalence as an alternative definition of 3-triangulation.
We often represent a 3-triangulation by the multiplication table of its al-
gebra. Graphically we represent 3-triangulations by drawings like the one
given in Figure 1. The bases in the triangles represent the edges in K,
and the vertices opposed to the bases represent the color assigned by the 3-
triangulation. This drawing contains all the structure of the 3-triangulation,
in particular the triangles and adjacencies between triangles are isomorphic
to the 3-triangulation’s Bose cycle graph. We use signs near the bases to
represent a signing of the 3-triangulation.

2 Conditions on 3-triangulations to generate
anti-Pasch Steiner triple systems

In this section we present the necessary and sufficient conditions for a 3-
triangulation to generate an anti-Pasch Steiner triple system.
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Figure 1: A 3-triangulation of order 7

Proposition 2.1 Let T = ({0,...,v — 1},0) be a signable 3-triangulation
of order v and let o be one of its signings. The Steiner triple system induced
by Y and o is anti-Pasch if and only if there do not exist four elements
1,7, k, 1 in C satisfying one of the following conditions:

AP-1:i# kkoi# jjo(koi)#kj# (ko(jo(koi)),
i = jo(ko(jo(koi)), and o(ko(jo(koi)), ) = a(j, koi) # o(k,i) =
o(k,jo (ko))

(i0j)o(jok) =iok, and o(i,j) = a(j.k) = ali o j,j o k) # ali,k)

AP-3: i # j,j #kk#L1L#1,
ioj=kol,iol=jok, o(i,j) =o(k,l), and o(i,l) = o(k, j)

AP-f:i#j,j# (io(iof)i#ioj,
i=jo(io(io]), ando(jio(io}f) =oli.ioj)# olij)

AP-5:i#ji#i0j,i# (io(ioj)),
j=io(io(ioj)), and o(i,j) = o(i,ioj)=o(i,io (ioj))

Proof: If T contains elements satisfying one of the conditions given, then
the Steiner triple system induced by Y and o contains one of the Pasch
configurations depicted in Figure 2. For example, in AP-1, the conditions
i#k,koi# jjo(koi)#k,and j # (ko(jo(koi))) ensure that the blocks
in Figure 2(AP-1) are real triples (no edge degenerates to a vertex) and the
conditions i = jo (ko (jo (ko1i))),and o(ko(jo(koi)),j)=0c(jkoi)#
o(k,i) = o(k,jo (koi)) give the structure of the Pasch configuration.
The proof of the completeness of these conditions requires a routine but
lengthy argument that we omit. [
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Figure 2: Pasch configurations in 3-triangulations
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3 Non-sum-one-difference-zero sequences

Let n > 1 be an odd integer. A non-sum-one-difference-zero sequence of
order n (NS1DO(n) for short) is a sequence ag, a1, ...ag,_1)/2 of numbers
in Z,, (with arithmetic mod n) such that:

NS1DO-1: ag = 0 and a(n,l)/g = 1,
NS1DO0-2: % does not belong to the sequence,

NS1DO0-3: for each i,1 <i < m, i # %, only one of the numbers ¢ or 1 — i
belongs to the sequence, and

NS1D0-4: for each j =1,2,3,...,n — 1, only one of the numbers j or —j
can be expressed as ay — ag—1 for some k € {1,...,(n —1)/2}.

The following are examples of NS1D0 sequences of orders 7, 9, 11, 13,
and 15, respectively:

0,5,2,1

0,3,4,8, 1
0,7,9,10,4, 1
0,2,3,10,6,9,1
0,13,2,11,4,7,6,1

As we soon see, NS1D0 sequences can be used to produce 3-triangulations,
Steiner triple systems, and anti-Pasch Steiner triple systems. We expect
that they can be applied to the generation of other combinatorial designs.

Ifag,...,a(,—1)/2 is a NS1DO sequence, its inductor is a sequence x1, 3,
o @p_1suchthatfor 1 <i < (n—1)/2, 24,0, , = a;and z,, |, 4, = a;j_1.
It follows from condition NS1D0-4 that the elements in this sequence are
well defined. The inductors for the NS1D0 sequences in our examples are:

2,0,5,2,5,1

4,1,3,8,4,0,8,3
10,9,4,0,4,10,7,1,7,9
3,2,9,10,1,3,10,9,6,6,0,2
7,0,7,2,6,2,11,4,11,1,13,4,13,6
Lemma 3.1 Let ag, ay, ..., ag,—1)/2 be a NS1DO0 sequence and let x1, 3,

.o, Tn_1 be its inductor. Fach number in the sequence different from 0 and
1 appears twice in the inductor, and O and 1 appear once each.
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Proof: For each i = 1,...,(n —1)/2 =1 only x4, 4, , and x4, _q,,, are
equal to a;. Only x,4,_,, is equal to zero and only Tagy_1y/2—agn_1)2—1 18
equal to one. [

Proposition 3.2 Each NS1D0 sequence of order n yields a 3-triangulation
of order n.

Proof: Let ag,a1,...,a(,-1)/2 be a NS1D0 sequence of order n and let

Z1,Z2,...,T,—1 be its inductor. We claim that ({0,...,n — 1},0) is a 3-

triangulation, where o is the idempotent and binary operation
. ‘l . . .
N A T T A B
ZOJ{ i if i = j.

The equation i 0 A = i with unknown A has only i as a solution, since if
there exists another solution Ag different from 4 then iodg = i—x;_», +% = 1.
Thus z;_y, = ]3 But this contradicts condition NS1DO0-2 because z;_»,

belongs to {ag,ai,...,am_1)/2}
The operation o is commutative, as follows. Let i,j be two different
elements in {0,...,n — 1}. From condition NS1D0-4 there exists a unique

number k such that ap — ar_1 is equal to j — i or i — 7; without loss of
generality we can assume that a; —ar—; = j — 4. Then z;_; = a; and
Ti—j = ag—1, SO
Tji—Tij=ak— Qg1 =J —1,
I Tij =]~ Tji,

and thus

. . o 1 _ _ o 1 _ - .

10)=1—Tj—j+5=]—Tj—i+5=)01

Now consider the system of equations

ioa =] (4)
joB =i (5)
with unknowns a and . They can be rewritten as
i — Ti—a + % = .7
j-wjgty =i

or equivalently as

Suppose first that (i

—j)+ %+ & {0,1}. Then by condition NS1D0-
3, only one of (i — j) + 5 or 1 —

(1 —7) + %) =(j—1i)+ % belongs to
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A ={ao,...,apm—1)2} (i —j)+ % belongs to A then, by Lemma 3.1,
it appears twice in {z1,22,...,2,_1}, and (j — i) + % does not appear, so
(4) has two solutions and (5) does not have any. Similarly when (j —i) + 3
belongs to A, (5) has two solutions and (4) does not have any.

Finally, if (i — j)+ 3 = 0 then (j —i) + 1 = 1. Tt follows from Lemma 3.1
that each of these elements appears once in z1,...,z,_1, and thus each of
(4) and (5) has exactly one solution. ]

The 3-triangulation of order n produced from a NS1D0 sequence ag, . . .,
a(n—1)/2 is the 3-triangulation induced by the sequence. The 3-triangulation
itself is a NS1D0 3-triangulation with NS1DO0 sequence ag, ..., a(,—1)/2-

4 NS1DO0 sequences and Steiner triple sys-
tems

Here we study the signability of NS1D0 3-triangulations. Lemma 5.3 in [3]
establishes that a 3-triangulation T is signable if and only if each cycle in its
Bose graph By has an even number of negative adjacencies. So we require
a characterization of the NS1D0 sequences that yield 3-triangulations with
this property.

The sign-inductor of a NS1D0 sequence ag, ..., a(,—1)/2 is a sequence
$1,82,...,8,—1 such that for 1 < i < (n —1)/2, Sa;—a; 1 = Sa;_1—a; =
sign((—1)71).

Proposition 4.1 Let n > 1 be an odd integer, and let Y be a NS1D0
3-triangulation of order n with NS1DO0 sequence ag,...,a(n_1)/2. Y 1is
signable if and only if n = 3 (mod 4), in which case o(a,b) = s, is
a signing of Y.

Proof: Figure 3 depicts the 3-triangulation T and the signing o. The
number of odd adjacencies is n((n — 1)/2 — 1) = n(n — 3)/2. This is
an even number of the form 2p for some positive integer p if and only if
n(n —3)/2 = 2p or n(n — 3) = 4p. Since n is odd, n — 3 must be divisible
by 4, and thus n =3 (mod 4). ]

The Steiner triple system arising from the 3-triangulation and the sign-
ing in Proposition 4.1 is the NS1D0 Steiner triple system induced by aq, - . .,
a(n—1)/2 and it is denoted by T, a¢,_1y/0- I Tag,. . ag,_1y,» 15 anti-Pasch,
then ao, ..., a(,—1)/2 is an anti-Pasch NS1D() sequence.

Proposition 4.1 restricts the order n of the 3-triangulations that can be
obtained from NS1D0 sequences to numbers congruent to 3 mod 4. Thus
only for numbers v = 3n = 9 mod 12 can it be possible to find a STS(v)
induced by a NS1DO0 sequence.

Table 1 gives some examples of anti-Pasch NS1D0 sequences.
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AT

Figure 3: Bose cycle graph for a NS1D0 3-triangulation of order n

Order NS1DO Sequence

7 0521

7 0631

11 047231

11 0791041

11 082351

11 095821

11 0910581

11 0104731

15 014123107111

19 0212436139151

23 023719161020131891

27 023610194177132012231

31 0236104127231324111827151

35 02361049167152512238225171
39 02361049165221221132511321733141
43 023610491651330213320361832173715251

Table 1: Examples of anti-Pasch NS1D0 sequences
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5 NS1DO0 sequences and anti-Pasch Steiner
triple systems

We collect some previous definitions and results. If n =9 (mod 12) is a
positive integer, and ag, a1, . .., a(,—1)/2 is a NS1DO sequence with inductor
T1,...,Tp—1 and sign-inductor si1,...,s,_1, then Ty, 4, _,,,, is the STS
induced by the 3-triangulation (0,...,n — 1,0) and the signing o, where o
is the operation:

. 'l . . .
P B T S |
ter= { i if i = (6)
and o satisfies:
o(i,]) = si—; (7)
Proposition 5.1 T, U(n_1y/2 1S AT anti-Pasch STS if and only if there do
not exist two numbers a,b € {0,...,n—1} such that one of these conditions

is satisfied, with a and b chosen in such a way that the indices into © and
s are all different from zero:

AP-1’:
—3+a-b+z(-53+b+a(-3-b+a(—3+b+az(-0a))) =0

s(3-b—z(-3-b+a(-L+b+2(-a))) =s(5-b—12(—0a) #
(—a)

AP-2:

L+a(@)—z(a-b)—z(@a—b-—z(a—"b)+=z(b) =0

s(a—0b) =s(b) =s(a—b—z(a—>b)+ (b)) # s(a)
AP-3’:

z(a) — z(b) — z(b+ z(a) — z(b)) + z(a — z(a) + (b)) =0
s(a) = s(b)
s(b+ z(a) — x(b)) = s(a — z(a) + (b))

AP-4’:
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AP-5’:
—g —a+a(—5+z(—3+x()) =0

[T
+
=X
|

|
+
8
&

s(a) = s(—=% + z(a)) = s(—

Here we have changed the notation x; and s; to x(i) and s(i), respec-
tively.

Proof: Substitute (6) and (7) in the conditions of Proposition 2.1. Then
make the following change of variables:

For AP-1: a=i—k,andb=j — k

For AP-2: a=i—Fk,andb=j—k

For AP-3: a=i—j,and b=k —1

For AP-4: a=i—j

For AP-5:a=i—3j ]

Proposition 5.1 gives a precise specification of the anti-Pasch conditions
on NS1DO0 sequences. From the algorithmic point of view, it ensures that
to decide if a NS1DO0 sequence is not anti-Pasch, it suffices to employ two
variables, @ and b in the proof, both of them in the range from 0 to n. This
decision takes O(n?) time, which improves upon the O(n?) time needed
to check if a 3-triangulation yields an anti-Pasch STS using the implicit
method in Proposition 2.1.

6 NS1DO sequences and the n-queens prob-
lem

Finding NS1DO0 sequences is strongly connected to the n-queens problem.
In fact, any known method or heuristic to find a solution to the n-queens
problem yields an analogous method or heuristic to find NS1D0 sequences.

To explain this equivalence we interpret an NS1D0 sequence of order n as
an arrangement of “queens” on a “chess-board” of size n x n. The rows and
columns of the chess-board are indexed from 0 to (n — 1) and each diagonal
in the Y\, direction containing one cell with coordinates (i,7) is labeled
with the number (j —4). Thus, given a sequence ag,ay, ..., a(—1)/2 (N0t
necessarily a NS1DO0 sequence) of pairwise different numbers in {0,...,n},
its queen arrangement is the set @ = {(a;,a;41)]i =0,...,(n —1)/2 — 1}
(the set of queens). In this arrangement the row i is occupied if and only if
there exists j € {0,...,n — 1} such that (i, j) € Q. When this occurs, (i, j)

11
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Figure 4: Queen arrangements for the NS1D0(11) 0,7,9,10,4,1

occupies row i. A row that is not occupied by any i = 0,...,n — 1 is empty
or free. Occupancy and emptiness for columns and diagonals are defined in
a similar way. Figure 4 gives an example of n-queen arrangement.

The characterization of queen arrangements corresponding to NS1D0
sequences is immediate:

Proposition 6.1 Let n > 1 be an odd integer and let ag,ay, ... a4 1)/

be a sequence of numbers in {0,...,n — 1}. This is a NS1D0 sequence if
and only if its n-queen arrangement satisfies the following conditions:

NS1D0-1’: Row 1 and column 0 are free, but row 0 and column 1 are
occupied by exactly one queen.

NS1D0-2°: Row % and column % are free.

NS1D0-3’: For each j € 2,...,n — 1, exactly one queen occupies some of
the columns j and 1 — j. The same is true for rows. Column j is
occupied if and only if row j is occupied.

NS1D0-4’: For each j € 1,...,n—1, exactly one queen occupies diagonal
Jj or —j.
A n-queen arrangement satisfying NS1D0-1’ to NS1D0-4" is a NS1D0
n-queen arrangement.
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Conditions NS1D0-1’ to NS1D0-4" are similar to the check rules in the
n-queens problem. In a NS1D0 n-queen arrangement the dominance of each
queen (that does not occupy columns and rows 0,1) spans two columns, two
rows and four \, diagonals, but two queens in the same  diagonal do not
dominate each other.

For a NS1DO0 sequence of order n its n-queen arrangement is a NS1D0 n-
queen arrangement; for an anti-Pasch sequence it is an anti-Pasch n-queen
arrangement. Our interest is in the following problems:

Problem 6.1 (NS1DO0 n-queens problem.) Given an odd integer n >
1 find all NS1D0 n-queen arrangements.

Problem 6.2 (Anti-Pasch n-queen problem) Given an odd integer n >
1 withmn =3 (mod 4), find all anti-Pasch n-queen arrangements.

We describe an algorithmic solution to both problems. Our approach
is based in the classic iterative method to solve the m-queens problem.
Equivalent modifications could be done to any other known method.

In this algorithm we assume the existence of a data structure to record
the occupancy of rows, columns and diagonals. All rows, columns and
diagonals are free when execution starts. The method looks for all possi-
ble queen arrangements that satisfy NS1D0-1’ through NS1D0-4’, so those
output are in fact all possible NS1DO0 sequences of order n.

Algorithm 6.1 Solve the NS1D0 n-queens problem.

Input: An odd integer n > 1,n = 3 mod 4.

Output: All NS1DO sequences of order n.

Method:

1. Mark rows 1 and ]5, columns 0 and % and diagonal 0 as occupied.
2. al0]« 0

3. placed_queens < 0

4. column_occupied_in_row[0] + —1

5. while placed_queens > 0 do

6. row < alplaced_queens)

7. column_occupied_in_row[row)] < column_occupied_in_row[row| + 1
8. column < column_occupied_in_row|row]

9. if column > n then

10. column_occupied_in_row[row] < 0

11. placed_queens < placed_queens — 1

12. if placed_queens < 0 then continue

13. row < a[placed_queens]
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14. column < column_occupied_in_row|[row]
15. if row # 0 then mark row (1 — row) as free
16. if column # 1 then mark column (1 — column) as free
17. Mark row row, column column and diagonals
(row — column) and (column — row) as free.
18. continue

19.  if ((column = 1) AND (placed_queens < (n —1)/2 —1)) OR
(row row is occupied) OR (column column is occupied) OR
(one of the diagonals (row — column) or (row — column) is

occupied) OR (column = 1 — row) then continue

20.  placed_queens < placed_queens + 1

21.  alplaced_queens] < column

22.  column_occupied_by_row[column] + —1

23.  if row # 0 then mark row (1 — row) as occupied.

24.  Mark row row, columns column and (1 — column),
and diagonals (row — column) and (column — row) as occupied.

25.  if placed_queens = (n — 1)/2 then

26. display a[0],...,a[(n —1)/2]

An algorithmic solution to the anti-Pasch n-queens problem can be ob-
tained by an easy modification to Algorithm 6.1 if we check at each iteration
that the equations in Proposition 5.1 are satisfied. Since we are gradually
building the sequence, some parts of the inductors are not available and
some equations cannot be evaluated, but if some equation which can be
evaluated is not satisfied then we can backtrack immediately. In practice
this is an efficient pruning method. This modification can be introduced
by adding the following line to Algorithm 6.1:

19.5 if some equation in Proposition 5.1 can be evaluated and is not
satisfied then continue

7 Conclusions

The construction of anti-Pasch Steiner triple systems by direct application
of Bose’s method is complicated by the apparent difficulty of determin-
ing when a particular quasigroup leads to an anti-Pasch system. NS1D0
sequences, in contrast, arise from algebraic structures for which the anti-
Pasch conditions can be expressed precisely. The close relationship between
the NS1DO0 n-queens problem and the n-queens problem together with the
anti-Pasch conditions of Proposition 5.1 opens a new way to generate anti-
Pasch STSs. Indeed, NS1DO0 sequences are so well structured that appears
probable that explicit constructions of anti-Pasch NS1D0 sequences can be
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developed.

Acknowledgments

Research is supported by the Army Research Office (U.S.A.) under grant
number DAAG55-98-1-0272 (Colbourn), and the Consejo Nacional de Cien-
cia y Tecnologia (México) under grant number CONACyT-983017 (Sagols).

References

[1] Y.M. Chee, C.J. Colbourn, and A.C.H. Ling, Asymptotically optimal
erasure-resilient codes for large disk arrays, Discrete Applied Math., to
appear.

[2] C.J. Colbourn and A. Rosa, Triple Systems, Oxford University Press,
1999.

[3] C.J. Colbourn and F. Sagols, 3-Triangulations and a Generalization of
Bose’s Method, preprint, University of Vermont, 1999.

[4] M.J. Grannell, T.S. Griggs, and C.A. Whitehead, The resolution of
the anti-Pasch conjecture, J. Combinatorial Designs, to appear.

15



